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Two related slogans for structuralism in the philosophy of mathematics are
that “mathematics is the general study of structures” and that, in pursuing
such study, we can “abstract away from the nature of objects instantiating
those structures”. (As such, structuralism stands in contrast with several
other general views about mathematics, including: the traditional view that
mathematics is the science of number and quantity; the view that it is an
empty formalism used primarily for calculation; and the view that it is the
study of a basic set-theoretic universe.) As the present survey aims to
show, these slogans, while suggestive, are ambiguous and in need of
clarification. Indeed, they have been interpreted in various different, even
conflicting ways.

The introduction of structuralist views in the philosophy of mathematics is
often assumed to have happened in the 1960s, in works by Paul
Benacerraf and Hilary Putnam; the trend picked up steam in the 1980s–
90s, when Michael Resnik, Stuart Shapiro, Geoffrey Hellman, Charles
Parsons, and others entered the fray; and these debates have been reshaped
again during the last 20 years, by several philosophical challenges to
structuralism and by the introduction of further variants, including
category-theoretic forms of structuralism. Besides introducing the reader
to the general topic of “structuralism in the philosophy of mathematics”, a
second main goal of the present essay will be to provide a novel, broader,
and relatively comprehensive taxonomy for the varieties of structuralism
on offer today.
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1. Eliminative vs. Non-Eliminative Structuralism

1.1 Beginnings of the Structuralism Debate in the 1960s

The discussion of structuralism, as a major position in English-speaking
philosophy of mathematics, is usually taken to have started in the 1960s. A
central article in this connection was Paul Benacerraf’s “What Numbers
Could Not Be” (1965; cf. also Benacerraf 1996, a later follow-up). The
background and foil for this article was the position, dominant at the time,
that axiomatic set theory provides the foundation for modern mathematics,
including allowing us to identify all mathematical objects with sets. For
example, the natural numbers 0, 1, 2, … can be identified with the finite
von Neumann ordinals (starting with  for 0 and using the successor
function ; similarly, the real numbers can be identified

∅
f : x → x ∪ {x})
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with Dedekind cuts constructed set-theoretically. Arithmetic truths are
then truths about these set-theoretic objects; and this generalizes to other
mathematical theories, all of whose objects are taken to be sets as well.

According to Benacerraf, such a set-theoretic foundationalist position
misrepresents the structuralist character of arithmetic in particular and of
mathematics more generally. To begin with, instead of working with the
finite von Neumann ordinals, we can equally well work with the finite
Zermelo ordinals (starting again with  for 0 but using the alternative
successor function ; and there are infinitely many other
choices that are equivalent. Similarly, instead of working with a set-
theoretic construction of the real numbers in terms of Dedekind cuts, we
can work with a construction based on equivalence classes of Cauchy
sequences on the rational numbers as suggested by Cantor and others. This
basic observation is hard to deny, and even set-theorist foundationalists
can agree with it (more on that below). But Benacerraf draws some
further, more controversial conclusions from this basic observation.

Benacerraf argues, in particular, that the natural numbers should not be
identified with any set-theoretic objects; in fact, they should not be taken
to be objects at all. Instead, numbers should be treated as “positions in
structures”, e.g., in “the natural number structure”, “the real number
structure”, etc. All that matters about such positions are their structural
properties, i.e., those “stem[ming] from the relations they bear to one
another in virtue of being arranged in a progression” (1965: 70), as
opposed to further set-theoretic properties of the von Neumann ordinals,
Dedekind cuts, etc. What we study and try to characterize in modern
mathematics, along such lines, are the corresponding “abstract structures”.
It is in this sense that Benacerraf suggests a structuralist position
concerning mathematics. The details of the position are left open and
somewhat vague, however, including how we should think about
Benacerraf’s abstract structures in the end, except that they are not to be

∅
f : x → {x})
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identified with set-theoretic relational systems (consisting of sets as
domains, with set-theoretic relations and functions defined on them).

A second article from the 1960s that was influential in the rise of
structuralism is Hilary Putnam’s “Mathematics without Foundations”
(1967). Like in Benacerraf’s case, for Putnam the foil was a set-theoretic
foundationalist position. This position is sometimes, although not always,
understood in a realist sense (e.g., by Gödel), i.e., as the description of an
independent realm of abstract objects, namely the universe of sets
characterized by the Zermelo-Fraenkel axioms. In opposition to that
position, Putnam suggests a form of “if-then-ism” (which can be traced
back to Russell). That alternative can again be illustrated in terms of the
natural numbers. How should an arithmetic theorem, say “ ”, be
understood now? It should be analyzed as having this form:

(where , , and  are what “play the roles” of 2, 3, and 5 in the
model M). Similarly for the real numbers (see Reck & Price 2000 for
details).

Instead of talking about if-then-ism in this connection, one can describe
Putnam’s position also as a kind of “universalist structuralism” (see again
Reck & Price 2000), since it involves universal quantification over
relevant systems and since our two structuralist slogans above seem
satisfied. Often an objection to this position is the “non-vacuity problem”.
It is based on the observation that if-then statements of the given form are
vacuously true if there is nothing that satisfies the antecedent, e.g., if there
is no model of the Dedekind-Peano axioms. (As this would also be the
case for, say, “ ”, the overall result is clearly not desirable.) In

2 + 3 = 5

For all relational systems M, if M is a model of the Dedekind-
Peano axioms [the basic axioms for arithmetic], then

+ =2M 3M 5M

2M 3M 5M

2 + 3 = 6
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response, one can invoke axiomatic set theory as providing the needed
models. But from Putnam’s point of view this has two drawbacks: First, it
relies on a realist and foundationalist view about set theory, it would seem,
thus undermining the thrust of if-then-ism. Second and more basically, it
forces us to treat set theory differently from other mathematical theories,
on pain of circularity. As a way out of these dilemmas, Putnam suggests to
employ modal logic. However, the details are again left open and largely
unexplored, especially for the case of set theory.

1.2 Consolidation and Further Discussions in the 1980s

One way to understand Benacerraf’s discussion in his 1965 article is that
he proposes to treat the natural number structure as a new kind of abstract
entity, different from set-theoretic objects and systems of objects. All
depends then on what exactly that amounts to, including whether one
should treat such structures as objects themselves, thus reifying them in
some substantive and still to be worked out way, or not. Benacerraf
himself was reluctant to do the latter, in line with his overall hesitancy to
talk about mathematical objects.

One subsequent writer who picked up on Benacerraf’s ideas in the early
1980s and tried to spell them out further, while still refraining from
treating structures as full-fledged objects, is Michael Resnik (cf. Resnik
1981, 1982, 1988, and, most systematically, 1997). For him too, modern
mathematics involves a “structuralist perspective”. This includes a kind of
pattern recognition; and one of Resnik’s main goals is to spell out the
corresponding epistemology further. Along Benacerraf’s lines,
mathematical objects are viewed as “positions” in corresponding patterns;
and this is meant to allow us to take mathematical statements “at face
value”, in the sense of seeing ‘0’, ‘1’, ‘2’, etc. as singular terms referring
to such positions. At the same time, doing so is not supposed to require
reifying the underlying structures, which would mean specifying precise
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criteria of identity for them, something Resnik avoids intentionally. (He
presents himself as a Quinean on this point, in the sense of adopting
Quine’s slogan: “No entity without identity!”)

Stewart Shapiro is a second philosopher of mathematics who, in the early
1980s, attempts to build on Benacerraf’s paper (see Shapiro 1983, 1989,
and most systematically, Shapiro 1997). By focusing more on
metaphysical questions and leaving behind hesitations about structures as
objects, Shapiro’s goal is to defend a more thoroughly realist version of
mathematical structuralism, thus rejecting nominalist and constructivist
views (more on that below). Such realism includes the semantic aspect
mentioned above (taking mathematical statements at face value); but
Shapiro also wants to clarify the talk about “positions in structures”
further. He distinguishes two perspectives on them. According to the first,
the positions at issue are treated as “offices”, i.e., as slots that can be filled
or occupied by various objects (e.g., the position “0” in the natural number
structure is occupied by  in the series of finite von Neumann ordinals).
According to the second perspective, the positions are treated as “objects”
themselves; and so are the abstract structures.

For Shapiro, the structures at issue thus have a dual nature: they are
“universals”, in the sense that the natural number structure, say, can be
instantiated by various relational systems (the system consisting of the
finite von Neumann ordinals, or of the Zermelo ordinals, etc.); but they are
also “particulars”, to be named by singular terms and treated as objects
themselves. To defend the latter further, Shapiro develops a general
structure theory, i.e., an axiomatic theory that specifies which structures
exist. While modeled on set theory, this theory is justified independently
(more on how below). As such, it is meant to underwrite “ante rem
structuralism”. Shapiro’s terminology of “ante rem versus in re” involves
an explicit reference to Medieval discussions of universals. The crucial
point in our context is that the structures specified in his theory are meant

∅
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to be ontologically independent of, indeed prior to, any instantiations of
them. In other words, the structures do not just exist in their instantiations,
but separate to and before them.

While Resnik’s and Shapiro’s structuralist positions are sometimes
identified, this is somewhat misleading given the differences already
mentioned. Nevertheless, there is significant overlap. Both recognize
mathematical structures as certain patterns with positions in them etc.
(whether these patterns are then treated as full-fledged objects, in a realist
sense, or not). And for both Resnik and Shapiro, the notion of
isomorphism is crucial (or some related, more general notion of
equivalence; see Resnik 1997 and Shapiro 1997). That is to say, for both a
relevant structure/pattern can be instantiated by any of a relevant class of
isomorphic relational systems. This corresponds to the fact that the
axiomatic systems at issue, for the natural numbers, the real numbers, and
similar cases, are all categorical (or quasi-categorical in the case of set
theory). Not every mathematical axiom system has that feature, of course,
e.g., the axiom systems for group or ring theory allow for non-isomorphic
instances or models. For Resnik as well as Shapiro, such “algebraic”
theories are to be treated in a different, more derivative way; their
structuralist point of view is meant to apply primarily to “non-algebraic”
theories, paradigmatically arithmetic.

There is another structuralist position from the 1980s that is quite different
and explicitly not realist, namely that introduced by Geoffrey Hellman (cf.
Hellman 1989, 1996, and later articles). While for Resnik and Shapiro the
inspiration was Benacerraf’s 1965 article, the starting point for Hellman is
Putnam’s 1967 article. In fact, Hellman’s “modal structuralism” is meant
to be a systematic development of Putnam’s modalized if-then-ism. The
modal aspect is now spelled out in detail and with real ingenuity, including
for the case of set theory (building on work by Zermelo etc.). For
Hellman, a sentence such as “ ” is analyzed as follows:2 + 3 = 5
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To avoid the non-vacuity problem, he adds the following assumption:

(We will come back to its justification below.)

As Hellman makes clear, his goal is to develop a form of “structuralism
without structures” (Hellman 1996), since the existence of abstract
structures, postulated by Resnik and Shapiro, is replaced by the modal
aspects of his position (and corresponding assumptions about necessity
and possibility). In fact, Hellman’s position is meant to be a form of
nominalism, i.e., to eliminate the appeal to any kind of abstract entity (not
only abstract structures but also sets etc.). Yet it is also not meant to rely
on possibilia, i.e., possible objects existing in some shadowy sense. This
leads Hellman to a specific understanding of the modalities at issue. They
are meant to be basic, i.e., the relevant possibilities and necessities are not
reducible to anything further. On the other hand, they are specified
precisely in terms of laws of modal logic (those of the system S5).

1.3 Towards a First Taxonomy of Structuralist Positions

From the late 1980s on, Shapiro’s and Hellman’s positions have often been
treated as the two main structuralist options. (This is still reflected in
Hellman & Shapiro 2019.) As they are quite different, this already
indicates that it is wrong to see “structuralism in the philosophy of
mathematics” as a unique position or a unified perspective, even though
certain general slogans are shared. Beyond that, other versions of
structuralism started to play a role in the late 1980s and early 1990s
(including forms of “set-theoretic structuralism” that go back further in

Necessarily, for all relational systems M, if M is a model of the
Dedekind-Peano axioms, then .+ =2M 3M 5M

Possibly, there exists an M such that M is a model of the Dedekind-
Peano axioms.
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time than the 1960s, as we will see). Consequently, the discussions about
structuralism have become both richer and more complex.

To clarify this situation, Charles Parsons suggested a first taxonomy, or at
least a distinction between two main kinds of positions (Parsons 1990).
Namely, there are “eliminative” forms of structuralism, as illustrated
paradigmatically by Hellman; and there are “non-eliminative” forms of
structuralism, like Shapiro’s. (The elimination at issue concerns the
postulation, or avoidance thereof, of structures as abstract objects.) Or put
in Hellman’s slightly later terminology, there is “structuralism without
structures”, on the one hand, and “structuralism with structures”, on the
other hand. Besides Shapiro and Resnik (with the qualifications above),
another proponent of the non-eliminative form is Parsons himself (see
Parsons 1990, 2004, and, most systematically, 2008); and another
proponent of the eliminative form of structuralism is Charles Chihara (cf.
Chihara 2004).

Nevertheless, it seems to have been tempting, and has remained fairly
widespread in the literature, to identify non-eliminative structuralism with
Shapiro’s position, i.e., with his realist and ante rem version. In fact,
critics sometimes dismiss “philosophical structuralism” generally as a
misguided form of metaphysics, thereby identifying such structuralism
with Shapiro’s realist form. (This seems especially tempting for
mathematicians and for philosophers rooted deeply in mathematical
practice; cf. Awodey 1996 and Carter 2008 for related discussions.) A
further consideration of Parsons’ form of non-eliminative structuralism
can help to show that this is too quick and inadequate in the end.

Unlike Shapiro, Parsons does not offer a novel, philosophically motivated
structure theory as the backing for his position. For him, we should remain
closer to mathematical practice (as it developed in the late nineteenth and
the twentieth centuries). In fact, structuralism should be seen as growing
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out of that practice, rather than being imposed on it from outside. For
Parsons this means, among others, taking abstract structures to be
introduced directly by categorical axiom systems, a practice he spells out
further in a “meta-linguistic” way inspired by Quine (see Parsons 2008). It
also means that we should refrain from “cross-structural identifications”
(as they can be found in Shapiro’s early works), e.g., from identifying the
natural number 1 and the real number 1. Such putative identities should be
left indeterminate, as is done in mathematical practice.

As should be evident, Parsons’ structuralist position, like Resnik’s, is less
realist than Shapiro’s. Moreover, he is explicit that adopting a
“structuralist view of mathematical objects” should be seen as separable
from, and orthogonal to, the realism/nominalism dichotomy.
Consequently, for Parsons one can be a non-eliminative structuralist
without being a realist in any strong sense; his own position is a case in
point. Yet Parsons’ version of structuralism is still meant to allow taking
mathematical statements at face value (as characterized above), so that it
remains realist in this minimal semantic sense.

2. Later Developments and a Broader Taxonomy

2.1 Metaphysical and Epistemological Challenges

So far we have traced the development of structuralism in the philosophy
of mathematics from Benacerraf and Putnam, in the 1960s, to Resnik,
Shapiro, Hellman, Chihara, and Parsons, in the 1980s–90s. During the last
20 years, a number of further philosophers have started to address this
topic. We now turn to the corresponding discussions, starting with certain
epistemological and metaphysical challenges to structuralism. Some of
these concern non-eliminative structuralism alone, especially Shapiro’s
position. (This again reflects the prominence of Shapiro’s position, to the
point that it is often identified, misleadingly, with “philosophical
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structuralism”.) Others are broader, including comparing the basic
commitments of various forms of structuralism. In what follows, we will
not try to be comprehensive, but provide a number of illustrative
examples.

Non-eliminative structuralism, in Shapiro’s and other versions, involves
the thesis that all that matters about mathematical objects are their
structural properties (as opposed to further intrinsic properties). In fact,
such properties are taken to determine the objects’ identities. But then,
objects that are indistinguishable in this respect—“structural
indiscernibles”—should be identified, it seems. As several critics pointed
out around the year 2000, this leads to the “identity problem” for
structuralism (cf. Keränen 2001, earlier Burgess 1999). It arises
prominently for systems or structures that are non-rigid, i.e., allow for
non-trivial automorphisms. In such cases, there are supposedly distinct
objects that are indistinguishable in the relevant sense. A widely known
case is the system of complex numbers (with the conjugate numbers i and
−i); but geometry and graph theory, among others, provide further
examples. The simplest example is probably an unlabeled 2-element graph
with no edges, whose two vertices are structurally indiscernible.

How can such cases be handled from a structuralist point of view? Is
structuralism (of this kind) simply incoherent, as some of its critics
charge? Or is it at least not applicable to non-rigid cases, which would
limit its reach significantly? Several responses to the identity problem
have been offered in the literature. One suggestion is to “rigidify” such
structures by enlarging the vocabulary that is used, e.g., by adding the
constant symbol ‘i’ for the complex numbers (either into the original
language or into the language for the “setting” used in the background, cf.
Halimi 2019). But this still seems problematic in the case of many
indiscernibles, perhaps even uncountably many. Another suggestion is to
treat identity as a primitive notion, as is arguably part of mathematical
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practice. But in that case too a number of questions remain (see Ladyman
2005, Button 2006, Leitgeb & Ladyman 2008, Shapiro 2008, Ketland
2011, and Menzel 2018, among others).

A second, more basic problem for structuralism starts again with the idea
that all that matters about mathematical objects are their structural
properties. With respect to non-eliminative structuralism, this is
sometimes strengthened to the thesis that the positions in mathematical
structures, as well as the abstract structures themselves, “only have
structural properties”. But if not formulated more carefully, this leads to
counterexamples (cf. Reck 2003). For instance, does the natural number
structure not have the property that it is a favorite example in many
debates about structuralism? And isn’t it a property of the number 9 to
have long been taken to be the number of planets in the Solar System?
Both seem clearly non-structural properties. Once again, structuralism
appears incoherent or, at the very least, in need of further clarification.

A natural response to this challenge is to refine the original structuralist
thesis, e.g., by saying that abstract structures only have structural
properties “essentially”, that only such properties are “constitutive” for
them, or something similar, while admitting that they have other properties
too (see Reck 2003, Schiemer & Wigglesworth forthcoming). This leads
to questions about how exactly to make this distinction. But even if it is
taken to constitute a satisfactory response, another problem remains: How
can we distinguish “structural” from “non-structural” properties in the first
place? Several answers to that question have been proposed in turn, e.g.,
that structural properties are those definable in a certain way, or that they
are those preserved under relevant morphisms. Yet no consensus on that
issue has been reached either (see Korbmacher & Schiemer 2018, also for
further references).

Structuralism in the Philosophy of Mathematics
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A third challenge directed again especially, or even exclusively, at non-
eliminative structuralism concerns the following. From a structuralist
point of view, positions are always “positions in a structure”; i.e., the
structure is primary and the positions are secondary. Hence, a particular
mathematical object, such as the natural number 2, seems “ontologically
dependent” on the background structure, here the structure of the natural
numbers. (The fact that for a structuralist it is misguided to consider the
number 2 as existing in itself reflects this aspect. It also illustrates a main
difference between structuralism and logicism or set-theoretic
foundationalism.) But how should this ontological dependence be
understood? Are there perhaps connections to “grounding” or related
notions in current analytic metaphysics? In this context too, many open
questions remain and a lively debate has started (cf. Linnebo 2008, also,
e.g., MacBride 2005 and Wigglesworth 2018).

A fourth basic challenge for structuralism, mostly again in its non-
eliminative form, is how we can have “access” to structures seen as
abstract objects (cf. Hale 1996, among others). To some degree, this
revives an older, more general debate about such objects. An initial
response, by Resnik, Shapiro, and Parsons (all following Quine here), is to
talk about the “positing” of structures, which promises to undercut the
access problem. But under what conditions is such positing legitimate
(given the threat of paradox familiar from naïve set theory)? A plausible
answer points to the “coherence” of the relevant theories (which, after
Gödel’s incompleteness results, is seen as taking the place of provable
consistency). Yet what exactly does such coherence amount to? An
interesting outcome of the debate about this issue is that Shapiro and
Hellman, coming from very different directions, have arrived at views that
are very close to each other (see Hellman 2005). Thus, in terms of some
basic commitments—ultimate conditions for existence in Shapiro’s case
and for possibility in Hellman’s case—their approaches converge in
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surprising ways. (This may be seen as providing support for both sides,
but also as undermining the realism/nominalism dichotomy.)

There are more challenges to structuralism in mathematics that one can
find in the literature of the last 20 years. While usually connected to the
problems just surveyed, sometimes these challenges go further. For
example, additional questions about the semantics involved in
structuralism have been raised, typically again for the non-eliminative
variant (cf. Button & Walsh 2016, Assadian 2018, etc.). Instead of
summarizing these challenges too, we hope our survey so far provides
enough illustration of the kinds of debates that have occurred in the recent
literature already.

2.2 Several Additional Variants of Structuralism

As mentioned earlier, in many discussions of structuralism, from the
1980s to the early 2000s and beyond, a few positions have taken center
stage: Shapiro’s, Hellman’s, sometimes Parsons’, and occasionally
Resnik’s. But other forms of structuralism have been around for decades
too. These deserve, and are starting to get, more attention as well. Without
any claim to comprehensiveness, we want to mention several noteworthy
examples. A major one, whose origins can be traced back to before the
1960s, is “set-theoretic structuralism” (cf. Reck & Price 2000, also Reck
& Schiemer forthcoming). To introduce it, let us reconsider the example
central to Benacerraf’s 1965 paper: the natural numbers.

As Benacerraf argued, there is something wrong with identifying “the
natural numbers” with a particular set-theoretic system; or at least, it
seems wrong to do so in any absolute sense. Benacerraf’s conclusion was
that numbers are not sets, nor objects of any kind, but positions in a
structure. Now, one can agree with almost everything Benacerraf says and
still want to identify “the natural numbers” with some set-theoretic system

Structuralism in the Philosophy of Mathematics
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in a less absolute sense. In doing so, one can admit that any other model of
the Dedekind-Peano axioms “would do as well”, i.e., could have been
chosen instead (except perhaps for pragmatic reasons, e.g., the ability to
generalize to the transfinite). This means that what we identify as the
natural numbers depends on an initial, provisional, and somewhat arbitrary
choice. For most mathematical purposes, such a pragmatic identification is
sufficient; in fact, this is exactly what one does in standard axiomatic set
theory. The resulting position deserves again to be counted as a form of
structuralism, as its defenders insist. What makes it structuralist is the
“indifference to identify” the natural numbers in any more absolute sense
(cf. Burgess 2015).

The core of set-theoretic structuralism, as just described, is to choose one
of several isomorphic systems as the pragmatic referent for “the natural
numbers” (similarly for the real numbers etc.). In a sense, our talk of “the
natural numbers”, then also of “the number 0”, “the number 1”, etc., is
relative to this initial choice. This is seen as unproblematic because, no
matter how we choose, we will get the same arithmetic theorems (because
of the categoricity of the axiom system, which implies its semantic
completeness). As background, we can again employ Zermelo-Fraenkel
set theory. But we can also broaden the approach slightly by allowing for
“atoms” or “urelements”, i.e., objects that are not sets. Thus, we can
include Julius Caesar or some beer mug in our domain, with the
consequence that either of them can “be” the number 2, say, in the sense of
taking up the “2-position” in the model for arithmetic we choose to work
with. Because of this feature, we will use “relativist structuralism” for this
approach (cf. Reck & Price 2000). It also seems fair to say that this
position, particularly in its set-theoretic version, is accepted by many
mathematicians, explicitly or implicitly. In fact, it may be the most widely
favored form of structuralism.
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In set-theoretic structuralism, and in relativist structuralism more broadly,
the only mathematical objects at play are those that axiomatic set theory,
possibly with urelements, allows us to introduce. We do not need to
postulate abstract structures in addition. For that reason, the position is
another form of eliminative structuralism (while it is not fully eliminative
insofar as it countenances sets). In fact, set-theoretic relational systems
(the set-theoretic models of theories) are themselves taken to be the
relevant structures here. (It is exactly such relational systems that are
called “structures” in many mathematics textbooks.) However, there is
another option in connection with the latter. Namely, we can also identify
the structure of the natural numbers, say, with the (higher-order) concept
defined by the Dedekind-Peano axioms; similarly for other (categorical)
axiom systems. This leads to yet another eliminative form of
structuralism: “concept structuralism” (cf. Isaacson 2010, Feferman 2014,
also Ketland 2015, Other Internet Resources).

According to concept structuralism, what matters in modern axiomatic
mathematics aren’t really objects, especially not problematic abstract
objects. Rather, crucial are mathematical concepts, e.g., the concept
“natural number system” (or “model of the Dedekind-Peano axioms”,
“progression”); similarly for the concept “complete ordered field” etc. (In
Ketland 2015, Other Internet Resources, such concepts are explicated
further in terms of intensional propositional functions, while Isaacson and
Feferman leave their nature more open.) More precisely, what matters in
the end is what follows from those concepts, in the sense of what can be
derived from the corresponding axioms. It is true, as concept structuralists
might admit, that often the way in which we reason in mathematics
involves talking about objects falling under the relevant concepts. But as
they would add, such talk can be explained away in the end (e.g., by
taking up a formalist position). In this or similar forms, concept
structuralism seems again a fairly widespread view among mathematicians
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and logicians, even though it has not been very prominent in the
structuralism debates until recently.

For the sake of a more comprehensive survey, we want to go even further.
As the next step, we will introduce two forms of structuralism that are
closely related to relativist structuralism and concept structuralism but not
identical with either. (Both are forms of “abstractionist structuralism”, as
we will see.) Let us start again with a higher-order concept defined by an
axiom system, such as “natural number system”, together with the set-
theoretic systems falling under it. However, instead of identifying the
corresponding structure either with that concept or with some
pragmatically chosen system falling under it, we focus on the whole
equivalence class determined by the concept.

At this point, we can go down one of two “abstractionist” paths. First, we
can simply identify the relevant structure with that equivalence class (with
the “concept in extension”, as it is sometimes put). Thus, corresponding to
the concept “natural number system” and set-theoretic systems falling
under it, like the finite von Neumann ordinals, there is the entire
equivalence class of corresponding models as a third entity. (Our primary
focus is again on categorical axiom systems, but the approach can be
generalized.) It is this class that is now called “the natural number
structure”. It is not a set, to be sure, but a proper class; but it can still be
studied logico-mathematically. Looked at from a “relativist” perspective,
the new approach can also be described as follows: Its core is to go from a
particular, arbitrarily chosen system falling under a higher-order concept
to the related equivalence class, i.e., the class of all systems isomorphic to
it (in the categorical case). And we can think of this move as involving a
kind of “abstraction”, specifically in the sense of the “principle of
abstraction” in Russell (1903; also adopted by Rudolf Carnap and others).
The result is a first form of “abstractionist structuralism”.
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There is a second path we can take, resulting in a second form of
abstractionist structuralism. It too has played a role in the recent
structuralism debates; but, like the first, it can also be traced back further
in time. Let us start again from a relevant higher-order concept, or from
the axiom system that defines it, together with an arbitrarily chosen
relational system falling under it (a set-theoretic system, say, possibly with
urelements). The new suggestion is to proceed as follows: We “abstract
away from the particular nature of its elements” so as to arrive at a novel,
distinguished relational system that deserves to be called “the natural
numbers” (cf. Dedekind 1888, especially as interpreted in Reck 2003).
The intention is that the objects introduced by such abstraction only have
structural properties, or better, only have these essentially. Also, together
these objects form a system isomorphic to the one from which we started
(unlike the equivalence class we just considered). Finally, it is the latter we
now consider the relevant abstract structure.

In several respects, this second abstractionist alternative is close to
Shapiro’s ante rem structuralism (who occasionally appeals to
“abstraction” himself, e.g., in Shapiro 1997); it is also close to Parsons’
form of non-eliminative structuralism. Yet it neither involves a separate
structure theory à la Shapiro nor an appeal to Parsons’ meta-linguistic
procedure. Instead, abstract structures are introduced “by abstraction”
from more concrete systems, e.g., from set-theoretic relational systems.
The relevant abstraction can be explicated further in terms of an
“abstraction operator” and a corresponding “abstraction principle”.
Another comparison that suggests itself then is with the use of abstraction
principles in contemporary neo-logicism. In fact, that connection has
already been explored in Linnebo & Pettigrew (2014) and Reck (2018a).
What we arrive at along such lines is an abstractionist form of non-
eliminative structuralism. In contrast, the first alternative mentioned above
is an abstractionist form of eliminative structuralism. (Given their
historical roots, these positions might be labeled “Russellian abstractionist
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structuralism” and “Dedekindian abstractionist structuralism”,
respectively; cf. Reck 2018a.)

The list of additional variants of structuralism does not end here either. Let
us mention five further examples very briefly, without going into any
details (and there may undoubtedly be more). First, Uri Nodelman and
Edward Zalta have introduced a form of non-eliminative structuralism,
parallel to Shapiro’s, which uses an “object theory” inspired by Meinong
to account for the abstract structures (Nodelman & Zalta 2014). Parallel to
that, one can use other fundamental theories for the introduction of
abstract structures, leading to further forms of non-eliminative
structuralism. As a second example, Hannes Leitgeb has described how to
adapt graph theory for this purpose (Leitgeb forthcoming). Third, Leon
Horsten has built on Kit Fine’s theory of “arbitrary objects” to construct a
parallel form of “generic structuralism” (Horsten forthcoming). Fourth,
above we already mentioned Charles Chihara’s “eliminative” form of
structuralism, which is not identical with Hellman’s (see Chihara 2004).
And fifth, there is a whole family of “categorical forms of structuralism”,
based on a variety of axiom systems from category theory, that has
become prominent recently.

We will postpone our discussion of categorical structuralism to section 3,
both because it is important mathematically, thus deserving treatment in a
separate section, and because it is harder to compare to the other forms of
structuralism. Before that, we want to offer a richer, more comprehensive
taxonomy for structuralist positions. This taxonomy will be wide enough
to encompass all the positions mentioned so far. But it will also point
beyond them, starting with the introduction of a basic dichotomy between
“metaphysical” and “methodological” structuralism.
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2.3 A Broader Taxonomy of Structuralist Positions

All the variants of structuralism described up to this point are forms of
“philosophical structuralism”, or more precisely, of “metaphysical
structuralism”. What that means is that these positions are intended to
provide answers to questions about what mathematical structures are (even
when this involves an eliminative stance), including views about their
existence, abstractness, identity, dependence, etc. Now, one can
distinguish this whole variety of philosophical positions from what is
sometimes called “mathematical structuralism”, or again more precisely,
“methodological structuralism” (cf. Reck & Price 2000, earlier Awodey
1996). In fact, we suggest that recognizing this basic dichotomy
—“metaphysical versus methodological”—to is crucial with respect to
both systematic and historical discussions of structuralism. (Among
others, it allows us to connect more naturally with categorical
structuralism; see, e.g., Corry 2004 and Marquis 2009.)

As its name suggests, methodological structuralism concerns the
methodology of mathematics, thus mathematical practice. Or as one might
also put it, it concerns a certain “style” of doing mathematics. That style
consists in studying whole systems or structures of objects in terms of
their global, relational, or structural properties, while neglecting the
intrinsic nature of the objects involved. This can be done in two main
ways, often intertwined in practice: by proceeding axiomatically, i.e., by
deriving theorems from basic axioms for the systems at issue; and by
considering morphisms between them (homomorphisms, isomorphisms,
etc.), together with invariants under those morphisms. As such an
approach typically involves infinite sets, non-decidable properties, and
classical logic, it tends to be opposed to more “computational” and
“constructivist” ways of doing mathematics (cf. Reck & Schiemer
forthcoming for extensive historical background).
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Such a structuralist methodology, or corresponding forms of
methodological structuralism, tends to be tied to a general assumption
about the subject matter of mathematics, namely: mathematics is the study
structures. But accepting that assumption does not, in itself, involve any
further views about the nature of those structures, at least not in any
detailed and philosophically loaded way. In contrast, all the forms of
metaphysical structuralism considered earlier are meant to provide such
views. This is exactly how they go beyond methodological structuralism
(often by building on it).

With respect to such metaphysical positions, Parsons’ “eliminative versus
non-eliminative” distinction remains helpful (although a more positive
label for the latter kind of views, along the lines of “structuralism with
structures”, might be better). However, the differences among
metaphysical forms of structuralisms do not stop there. In fact, only
working with Parsons’ distinction obscures some important differences. As
already mentioned, Shapiro’s ante rem structuralism is far from the only
version of non-eliminative structuralism; nor is Hellman’s the only form of
eliminative structuralism. We now want to suggest some more fine-grained
distinctions so as to introduce more order and clarity into the debates.

Let us first look again at non-eliminative versions of structuralism. Some
positions falling under that label introduce abstract structures by means of
a basic theory. This includes Shapiro’s structure theory, but also, e.g.,
Nodelman & Zalta’s object theory and Leitgeb’s adaptation of graph
theory. All of them are forms of ante rem structuralism, but significantly
different ones. In addition, there are forms of non-eliminative
structuralism that are based on abstraction principles instead, which we
called “abstractionist forms of structuralism” above. We distinguished two
variants of those, the Russellian and the Dedekindian variant, which
involve different kinds of structures as the outcome of the abstraction
process. (If we reconstruct such abstraction as mathematical operations or
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functions, their arguments are the same but their values are different.) And
as this shows, there are abstractionist and non-abstractionist versions of
non-eliminative structuralism.

If we reflect on these alternatives more, the role of a further basic
dichotomy becomes apparent (within the category of non-eliminative
structuralism): that between ante rem positions and either in re or post rem
positions. Shapiro’s position is explicitly a form of ante rem structuralism.
In contrast, Russellian abstractionist structuralism can be seen as a form of
post rem structuralism, because the equivalence classes used as the
relevant structures are “built out of” their elements as classes, to which
they are thus posterior. In Dedekindian abstractionist structuralism, there
is a form of posteriority involved as well. Here too, we start with more
concrete relational systems, usually systems of sets or urelements, and we
introduce abstract structures on that basis. But the prior versus posterior
relation is different now. (It is not based on the element-class relation, but
on a more basic argument-function-value relation.) We also end up with
abstract structures that are neither standard sets nor classes.

On the side of eliminative structuralism, further sub-divisions should be
made as well. Again, there are fully eliminative positions, which avoid
commitment to any kind of abstract objects. Hellman’s modal
structuralism is designed to be of this sort. But there are also semi-
eliminative positions, which avoid commitment to abstract structures in
addition to more usual, relatively concrete mathematical objects, which
are accepted. Set-theoretic structuralism is a good illustration; universalist
structuralism is another, at least when backed by set theory. Should
relativist structuralism in general, and set-theoretic structuralism in
particular, be seen as cases of in re structuralism, in the sense that abstract
structure exist “in” their more concrete instantiations? Perhaps; but this
thesis does not seem to be forced on us (cf. Leitgeb forthcoming for more
on this issue). Note also that we would end up with a form of non-

Structuralism in the Philosophy of Mathematics

22 Stanford Encyclopedia of Philosophy

eliminative structuralism then instead. The same question arises for in re
forms of structuralism more generally; the details will matter. (For more
on such approaches—sometimes labeled “Aristotelian” as opposed to
“Platonist”—see Pettigrew 2008 and Franklin 2014.)

Yet another version of eliminative structuralism that has started to attract
more attention in the literature is concept structuralism. In cases where this
position is meant to do without any appeal to abstract objects (e.g., by
basing itself on formalism), it amounts to a fully eliminative view. Various
questions remain, however, about the appeal to concepts in it, i.e., about
their existence, nature, and identity (cf. Parsons 2018). Depending on the
answers, a strict nominalist might still find this position unacceptable,
since concepts may be seen as another problematic kind of abstract
entities. If a concept structuralist allows for abstract objects, such as sets,
to play a secondary role, this becomes a semi-eliminative position.
Structures conceived of as abstract objects are still eliminated (by
reconceiving them as concepts), but relational systems remain.
Alternatively, we might be dealing with a particular form of
methodological structuralism here, where additional metaphysical
questions are brushed aside.

3. Category-Theoretic Structuralism

3.1 Category Theory as the Study of Mathematical Structures

Over the past two decades, different proposals have been made to
formulate a theory of mathematical structuralism based on category
theory, thus a theory, or theories, of “categorical structuralism”. We are
now in a better position to consider these proposals, although we will still
proceed indirectly, starting with more background. Category theory was
first introduced as a branch of abstract algebra in Eilenberg & Mac Lane’s
famous article, “General Theory of Natural Equivalences” (1945). It
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subsequently developed into an autonomous mathematical discipline, in
work by Mac Lane, Grothendieck, Kan, Lawvere, and many others, with
important, wide-ranging applications in algebraic topology and
homological algebra and, more recently, in computer science and logic (cf.
Landry & Marquis 2005, also the entry on category theory in this
encyclopedia).

Building on these developments, the philosophical discussion of
categorical structuralism was initiated by Awodey, Landry, Marquis, and
McLarty in the 1990s. To understand their contributions better, it helps to
go back to our distinction between “metaphysical” and “methodological
structuralism”, which is drawn explicitly in Awodey (1996). Or rather,
Awodey distinguishes between the use of category theory as a framework
for “mathematical” and for “philosophical structuralism”. He describes
mathematical structuralism as a general way of “pursuing a structural
approach to the subject“, i.e., a particular style of practicing mathematics
that employs structural concepts and methods. He then argues that
category theory provides the best way of capturing structural mathematics
in this sense. However, he also presents it as a framework for
philosophical structuralism, i.e., “an approach to the ontology and
epistemology of mathematics”. Let us first consider the former argument.
(We will return to the latter in section 3.3).

Category theory, understood as a branch of pure mathematics, has
frequently been described as a “general theory of mathematical
structures”, e.g., by Mac Lane (1986, 1996). But what exactly is meant by
“structure” here? At least two relevant notions are mentioned in the
literature. First, a structure can be understood in the set- and model-
theoretic sense, i.e., as a tuple consisting of a domain and an ordered
sequence of relations, functions, and distinguished elements used for the
interpretation of a formal language. (This is the notion of “relational
system” we appealed to above more informally.) Such structures are often
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called “Bourbaki structures” in this context. Their properties are usually
defined axiomatically, e.g., by the group axioms or the Dedekind-Peano
axioms for arithmetic.

Second and alternatively, there is a categorical notion of structure based on
the primitive concept of morphisms between mathematical objects.
Typically, a category consists of two types of entities, namely objects and
morphisms between them, i.e., mappings represented by arrows that
preserve some of the internal structural composition of the objects. An
axiom system that defines the general concept of a category, along such
lines, was first introduced by Eilenberg and Mac Lane (1945). It describes
a suitable composition operation on arrows, its associativity, as well as the
existence of an identity morphism for each object (cf. Awodey 2010 for a
textbook presentation of category theory).

Why might category theory be considered a more adequate framework for
a mathematical structuralism than other disciplines, in particular
traditional (Cantorian, Zermelo-Fraenkel) set theory? It is helpful to
consult Awodey (1996) on this issue. According to him, the Bourbaki
notion of structure is a direct result of the modern axiomatic tradition of
Dedekind, Hilbert, and the Bourbaki group. This tradition eventually led
to a structuralist perspective on mathematics. Yet set theory is not an ideal
framework for capturing a structuralist understanding of mathematical
objects. To begin with, set theory is closely tied to a model-theoretic
conception of mathematical theories, including the view that such theories
study their models only “up to isomorphism”. But central to a structuralist
point of view is the principle (more on which below) to “identify
isomorphic objects”; and this principle is well motivated from a category-
theoretic viewpoint, but less so if mathematical objects are represented
set-theoretically.

Erich Reck and Georg Schiemer

Spring 2020 Edition 25



A second advantage of category theory over set theory, also mentioned in
Awodey (1996), is that the categorical notion of structure is “syntax
invariant”. That is to say, unlike in standard model theory the categorical
specification of objects in terms of their mapping properties is independent
of the choice of a particular signature used for their description (a choice
of basic relations, functions, and distinguished elements). Third and most
importantly, characteristic for category theory is its focus on morphisms
and transformations between mathematical objects that preserve (some of)
their internal structure. It is the emphasis on structure-preserving
mappings in the specification of objects that is often viewed as a central
feature of the structuralist turn in modern mathematics. As such, it was
present in various parts of nineteenth- and early twentieth-century
mathematics, including Galois theory, Klein’s Erlangen program,
Dedekind’s foundational writings, as well as in work on abstract algebra
by the Noether school (cf. again Reck & Schiemer forthcoming).

Category theory was first developed, against the background of these
developments, as a unifying framework for the study of the relations
between different mathematical structures (cf. Landry & Marquis 2005,
Marquis 2009). Different types of mappings were introduced for this task.
One type involves the morphisms between the objects of the same
category, e.g., group homomorphisms in the category of groups, or linear
maps in the category of vector spaces. Another important type of
mappings are “functors” between different categories. (Roughly, a functor
between two categories is a mapping of objects to objects and arrows to
arrows that preserves the categorical properties in question.) It is such
functors that are the central tools in category-theory for comparing the
objects of different mathematical categories, and thus, to “relate structures
of different kinds” (Awodey 1996). As such, they are central to categorical
structuralism.
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3.2 Categorical Foundations and Debates About Them

As has been argued repeatedly in the literature along the lines just
summarized, category theory provides a more natural framework than
traditional set theory for mathematical or methodological structuralism in
mathematics. But what about its prospects as a form of philosophical
structuralism, i.e., an alternative to the theories of Resnik, Shapiro,
Hellman, etc.? We already mentioned that Awodey (1996) also presents it
as such; but this has led to ongoing controversies. Hellmann (2003)
contains a first critical discussion of philosophical claims such as
Awodey’s. That is to say, Hellman’s article raises several objections
against the view that category theory provides an adequate framework for
a structuralist account of mathematics in the philosophical sense. As we
will see, these objections are closely related to the status of category
theory as a foundational discipline.

Recently there has been much debate on which criteria a theory has to
meet in order to serve as a proper “foundation” for mathematics.
According to a helpful proposal in Tsementzis (2017), a foundational
system has to consist of three items, namely:

i. a formal language;
ii. an axiomatic theory expressed in that language; and

iii. a rich universe of objects, described by the theory, in which all
mathematical structures can be located, represented, or encoded.

Zermelo-Fraenkel set theory clearly represents a foundational system in
this sense. The axioms of ZFC are usually formulated in a formal first-
order language; and they describe a comprehensive universe, the
cumulative hierarchy of sets, in which mathematical objects such as
number systems, groups, rings, topological spaces, etc. can be represented.

Erich Reck and Georg Schiemer

Spring 2020 Edition 27



In research on category theory from the 1960s onward, several
axiomatizations of specific categories have been proposed as alternative
foundations for mathematics. This includes the axiom systems describing
the category of sets and functions, on the one hand, and the category of
categories, on the other hand, as first presented in Lawvere (1964, 1966).
Both were explicitly introduced as foundational systems, and thus, as
alternatives to Zermelo-Fraenkel set theory. More recently, elementary
topos theory has been developed as a form of categorical set theory that
can serve as a foundational system in the above sense (cf. Landry &
Marquis 2005, Marquis 2013).

This puts us in a position to return to Hellman’s 2003 challenge. The
question of whether category theory can be used to formulate a version of
philosophical structuralism is, in his view, directly related to the presumed
autonomy of these new approaches from traditional set theory. Building on
Feferman (1977), he formulates two general objections. Following
Linnebo & Pettigrew (2011), we can call the first the “logical dependence”
objection. Its core is the argument that category theory, general topos
theory, etc. are not autonomous of set theory in the end. The reason is that
the axiomatic specification of categories and topoi presupposes the
primitive concepts of operation, collection, and function, and the latter
need to be defined in a set theory such as ZFC. Categorical foundations are
therefore dependent on non-structural set theory.

The second argument against the autonomy of categorical foundations has
been called the “mismatch objection”. It concerns the general status of
category theory or topos theory; and it is based on the distinction between
two ways of understanding mathematical axioms, namely as “structural”,
“algebraic”, “schematic” or “Hilbertian”, on the one hand, and as
“assertoric” or “Fregean”, on the other hand. As Hellman argues,
foundational systems such as classical set theory need to be assertoric in
character, in the sense that their axioms describe a comprehensive universe
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of objects used for the codification of other mathematical structures.
Zermelo-Fraenkel set theory is an assertoric, “contentual” theory in this
sense. Its axioms (e.g., the power set axiom or the axiom of choice) make
general existence claims regarding the objects in the universe of sets.

In contrast, category theory represents a branch of abstract algebra, as its
origin reveals. Thus it is, by its very nature, non-assertoric in character; it
lacks existence axioms conceived as truths about an intended universe. For
example, the Eilenberg-Mac Lane axioms of category theory are not
“basic truths simpliciter”, but “schematic” or “structural” in character.
They function as implicit definitions of algebraic structures, similar to the
way in which the axioms of group theory or ring theory are “defining
conditions on types of structures”. This point is related to another
argument against the autonomy of category theory that Hellmann calls the
“problem of the ‘home address’: where do categories come from and
where do they live?” (2003: 136). Given the “algebraic-structuralist
perspective” underlying category theory and general topos theory, its
axioms make no assertions that particular categories or topoi actually
exist. Classical set theories, such as ZFC with its strong existence axioms,
have to step in again in order to secure the existence of such objects.

Hellman’s and Feferman’s arguments against the foundational character of
category theory have been examined from various angles in the
subsequent literature. One can distinguish between two main types of
responses, namely:

i. by proponents of “categorical foundations”, who aim to defend the
autonomous character of category theory relative to classical set
theory; and

ii. by “non-foundationalists”, who call into question that category theory
should be viewed as a foundational discipline.
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A series of articles by McLarty represent the first line of response well
(e.g., McLarty 2004, 2011, 2012). Roughly speaking, his reply to Hellman
is the following: Whereas category theory and general topos theory did
originate as algebraic theories and are, thus, not feasible as foundational
systems, certain theories of particular categories and toposes have been
introduced as alternative foundations. McLarty’s central examples are
Lawvere’s axiomatizations of the category of categories and his
“Elementary Theory of the Category of Sets” (ETCS).

According to McLarty, these theories should be understood as assertoric in
Hellman’s sense. That is to say, their axioms are not merely implicit
definitions, but general existential claims about categories, sets, and
functions. ETCS, for instance, presents a function-based set theory, where
sets and mappings between them form a topos. In contrast to ZFC, with its
primitive membership relation, in ETCS a set is not specified in terms of
its internal composition, but rather in terms of its mapping properties with
respect to other sets, which are formulated independently of ZFC.
McLarty’s response to the two objections mentioned above is then that
categorical set theories such as ETCS do provide a foundation for
mathematics that is logically autonomous from traditional, non-structural
set theories. Moreover, given that mathematical structures can only be
encoded in ETCS as objects up to isomorphism, such categorical set
theories provide a more adequate foundation for modern structural
mathematics than ZFC. (We will return to this point below.)

The second, quite different line of response to Hellman’s objections is
represented in Awodey (2004; cf. Landry 1999). In that article, Awodey
outlines a category-theoretic form of structuralism that is decidedly anti-
foundationalist. He holds, in agreement with Hellman and McLarty, that
both the Eilenberg-Mac Lane axioms for category theory and the axioms
of general topos theory are schematic. But he then argues that category
theory in general does not, and should not be taken to, provide a
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foundation for mathematics, either in a logical or ontological sense.
Rather, it presents a general and unifying framework or language for
structural mathematics. He thus rejects Hellman’s assumption that the
success of categorical structuralism is in any form dependent on whether
category theory is usable as a foundational enterprise or not.

In fact, according to Awodey the central motivation for a category-
theoretic approach to mathematics is to sidestep foundational issues
concerning the nature of mathematical objects or the study of a single
comprehensive universe in which all structures can be represented. While
topos theory, say, might well serve as a structural foundation for
mathematics, for Awodey such a foundational approach runs against the
structuralist perspective embodied in category-theory. In his own words,
“the idea of ‘doing mathematics categorically’ involves a different point of
view from the customary foundational one” (Awodey 2004: 55). In light of
such fundamental, ongoing debates about categorical foundations for
mathematics, what are the implications for categorical structuralism in the
philosophical sense, along Awodey’s lines and more generally? This is
what we turn to next.

3.3 Distinctive Features of Categorical Structuralism

Beyond the issue of methodological structuralism, the literature on
categorical structuralism during the last 20 years centers around two
questions that have already been mentioned. First, in what sense does
category theory provide a framework for philosophical structuralism?
Second, why is it better suited for that task than other frameworks, such as
set theory, Shapiro’s structure theory, and Hellman’s modal logic, as has
been claimed? In recent work on these topics, one can find three related
philosophical assumptions that characterize categorical structuralism and
distinguish it from the versions of structuralism surveyed earlier. We will
treat each of them in turn, starting again with Awodey’s writings.
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A first characteristic assumption is that all mathematical theorems are
schematic statements that have a conditional form. This point is explicit in
Awodey (2004). We already saw that according to Awodey a category-
theoretic approach is non-foundational in character. This includes that
mathematical axioms and theorems, as expressed in category theory,
should be understood as schematic statements. They do not express truths
about the specific nature of mathematical objects, but rather, about their
respective properties and relations. In addition, mathematical theorems
are, at least in principle, all of hypothetical form. They can be
reconstructed as if-then statements. Note that this view of the logical form
of mathematical theorems is prima facie similar to the if-then-ism one can
find in Putnam’s works, and earlier in Russell’s, as mentioned in section 1.

However, there is also an important difference between standard if-then-
ism and a category-theoretic approach in terms of the ontological
commitments involved, as Awodey points out. According to standard if-
then-ism, any mathematical statement can be translated into a universally
quantified conditional statement, where the quantifiers are effectively
meta-theoretic in nature, ranging over all set-theoretic systems of the right
type. As such, the approach presupposes a rich ontology of sets in which
such systems can be constructed. In contrast, along category-theoretic
lines mathematical theorems do not involve such ontological
commitments. There is no implicit generalization over the Bourbaki
structures of a theory, e.g., over all groups, rings, or number systems.
Rather, a mathematical theorem is “a schematic statement about a
structure […] which can have various instances” (Awodey 2004: 57).
These instances remain undetermined on purpose, unless a further
specification of them is needed for the proof of the theorem in question.

A second distinctive feature of categorical structuralism, not only for
Awodey, concerns a certain “top-down” conception of mathematical
objects characteristic for category theory. According to standard set theory,

Structuralism in the Philosophy of Mathematics

32 Stanford Encyclopedia of Philosophy

mathematical objects are constructed from the “bottom up”, in successive
steps starting from some ground level (the empty set or also a domain of
urelements). Every object is thus determined, as a set, in terms of its
members. In contrast, mathematical objects in category theory are
characterized in a top-down fashion, starting with the Eilenberg-Mac Lane
axioms and using the notion of morphism. Hence, the objects in a given
category, such as that of rings or topological spaces, are not considered
independently of the relevant morphisms. They are fully determined by
their mapping properties, as expressible in the language of category
theory. Nothing further is assumed about their inner constitution. In
particular, questions about their set-theoretic nature are considered
redundant (see also Landry & Marquis 2005.)

Third, arguably the most important feature of categorical structuralism is
that it verifies a version of the “structuralist thesis” (hinted at earlier).
Recall here Benacerraf’s argument in his 1965 paper that numbers should
not be identified with particular sets, but rather, with positions in an
abstract structure. Benacerraf also emphasizes that only certain properties
are relevant in arithmetic. For him, these are the number-theoretic
properties, such as “being prime” or “being even”, that can be defined in
terms of the primitive relations and functions of the theory at issue. The
general structuralist thesis holds, then, that all (relevant) properties of the
objects treated by a mathematical theory should be structural in a specified
sense. (The question what “structural” means also came up earlier.)

Categorical structuralists typically argue that category theory presents the
most adequate framework for a structuralist understanding of
mathematical objects given that all the properties expressible in its
language turn out to be structural (see, e.g., McLarty 1993, Awodey 2004,
and Marquis 2013). This is so because the category-theoretic study of
mathematical objects, such as rings or topological spaces, allows us to
express just the right kind of “structural information”, namely information
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about the structural properties of these objects. In this context, structural
properties are usually characterized in terms of the notion of isomorphism
invariance. Given a category C, a morphism  presents an
isomorphism between objects A and B if and only if there is a morphism 

 such that  and . A property P of an object
A in category C is then structural if it remains invariant under the
isomorphisms in C, that is, if , for all isomorphisms f (cf.
Awodey 1996).

We saw above that the representation of mathematical objects in
traditional set theory (proceeding “bottom up”) brings with it the
possibility to express all sorts of properties about their set-theoretical
constitution that are not isomorphism invariant in this sense. The central
advantage of category theory over classical set theory (and similar
approaches) is, according to this argument, that such non-structural
properties are simply ruled out in the categorical framework. This point
was first stressed in McLarty’s “Numbers Can Be Just What They Have
To” (1993), which, as the title suggests, presents a rejoinder to Benacerraf
(1965). McLarty’s central thesis in this article is that Benacerraf’s
structuralist program is most successfully realized if one considers
numbers to be represented in categorical set theory (such as in ETCS or a
subsystem thereof), and not in orthodox set theory.

To elaborate this advantage further, number systems of basic arithmetic
can be characterized in such categorical frameworks as “natural number
objects”, as was first shown by Lawvere. In contrast to their ZFC-based
representation, such objects are not just isomorphic but share “exactly the
same properties”, namely those expressible in the language of the category
of sets. In other words, any two natural number objects are “provably
indiscernible”, in the sense that they “provably have the same properties”
(McLarty 1993). Moreover, all of these properties are structural in the
above sense. As a consequence, Benacerraf’s dilemma of isomorphic

f : A → B

g : B → A g ∘ f = 1A f ∘ g = 1B

P(A) ↔ P(f (A))
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numbers systems with different set-theoretic properties does not arise in
the context of categorical set theory. The conclusion is that numbers can,
after all, be identified with sets, but with structural ones as defined in
ETCS.

As McLarty and others have argued, this observation generalizes from
numbers to all other mathematical objects studied in category theory. The
claim is that any property of the objects in a given category that is
expressible in the language of category theory is structural in the sense of
being isomorphism invariant. The main consequence for a structuralist
conception of mathematical objects is summarized by Awodey as follows:

This would seem to illustrate a main advantage of categorical forms of
structuralism over set-theoretic and similar ones.

A rejoinder should be added, however. McLarty’s and Awodey’s claim that
all mathematical properties expressible in categorical set theory are
isomorphism invariant has been contested, e.g., in Tsementzis (2017). In
fact, Tsementzis argues that neither ZFC nor ETCS provide fully
structuralist foundations for mathematics, since their respective languages
do not, after all, exclusively allow for the formulation of invariant
properties. Then again, both Makkai’s FOLDS system (Makkai 1995,
Other Internet Resources, 1998) and the Univalent Foundations program
developed in Homotopy Type Theory (Univalent Foundations Program
2013) seem to meet this condition. Here we have reached another ongoing
debate in the literature.

The technical results just mentioned are clearly relevant for our
discussion, but we cannot explore them further in this general survey. (Cf.

Since all categorical properties are thus structural, the only
properties which a given object in a given category may have, qua
object in that category, are structural ones. (Awodey 1996: 214)
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Awodey 2014 for more on the relation between structuralism and the
Univalent Foundations project.) We also have to leave a further, more
definite evaluation of the philosophical claims and arguments concerning
categorical structuralism to another occasion, interesting and important as
that debate is. Instead, we now conclude with some more general remarks
about structuralism, even beyond the philosophy of mathematics.

4. Conclusion

4.1 The Varieties of Mathematical Structuralism

We had two main goals in this essay. The first was to introduce our readers
to the general discussion of structuralism in contemporary philosophy of
mathematics. Second, we tried to provide a richer, more inclusive
taxonomy for that discussion, including making evident that a much larger
variety of structuralist positions has played a role in it than is usually
acknowledged. To be sure, a certain amount of variety has been
recognized before, as reflected in the distinction between eliminative and
non-eliminative positions, with Shapiro’s ante rem structuralism and
Hellman’s modal structuralism as paradigms; and categorical structuralism
has been acknowledged as a third main alternative. But the range of
positions at play is much greater than that, especially in the recent
literature. “Mathematical structuralism” is not the name of a single
position, but of a multifaceted family of them.

There are two main reasons for promoting our more inclusive taxonomy.
The first is that, while numerous versions of structuralism for mathematics
have been proposed, several of them have not received much attention yet,
partly because their relationships to Shapiro’s, Hellman’s, and category-
theoretic positions have remained unclear. Along the way, we tried to
build some corresponding bridges. The second reason is that several
important variants played a role already before the 1960s, i.e., before the
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publications by Benacerraf and Putnam that are often seen as the starting
point for debates about structuralism in philosophy. This concerns both
methodological and metaphysical structuralism, a basic distinction we
highlighted; but we only hinted at the relevant “pre-history” of our topic in
the present survey (We refer the reader to Reck & Schiemer forthcoming
for more on it.)

4.2 Structuralism Beyond Mathematics

Another relevant aspect we did not explore in the present essay, although
it should be mentioned at least briefly before closing, consists of debates
about “structuralism” outside the philosophy of mathematics. There are
two main areas in which one can find such debates (although they have
reverberated further). The first is the philosophy of physics, where
structuralist positions have played a significant role as well (including one
called “structural realism”, which comes in both an “ontic” and an
“epistemic” form). The second consists of several parts of the humanities
and social sciences, primarily linguistics and anthropology, but also
psychology, sociology, etc. There too, “structuralism” (and “post-
structuralism”) has been a major topic, indeed for a relatively long period.
In both cases, there are ties to mathematical structuralism, although
sometimes these ties are only loose.

At a basic level, the debate about structuralism in the philosophy of
physics concerns how to think about the “objects” of modern physics,
given the revolutionary changes quantum mechanics and relativity theory
have brought with them. More particularly, it concerns the suggestion to
refer to “structures” in this connection (cf. French 2014, Ladyman 2007
[2019], etc.), in a way that is closely related to the philosophy of
mathematics. At another level, this debate concerns how to conceive of
what, if anything, remains constant through theory changes in the ontology
of physics (cf. Worrall 1989, and see the entry on structuralism in physics
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in this encyclopedia). Third, there are debates about representation in
science that are related to structuralism (cf. van Frassen 2008). While
there are several points of contact one could pursue further (e.g.,
concerning “structural indiscernibles” and versions of “set-theoretic versus
category-theoretic structuralism” in the context of physics), we refrain
from doing so here.

The structuralism introduced into linguistics by Ferdinand de Saussure and
Roman Jakobson, then adopted by other thinkers in the humanities and
social sciences—most prominently by Claude Levi-Strauss in
anthropology and by Jean Piaget in psychology (cf. Levi-Strauss 1958
[1963], Piaget 1968 [1970], also Caws 1988)—does have ties to
mathematical structuralism as well. However, they are looser than in the
case of the philosophy of physics. In addition, the kind of psychological
determinism often associated, or even identified, with structuralism in the
humanities and social sciences (and criticized in post-structuralism) has no
analogue on the side of mathematics (or physics). Still, these connections
are not totally uninteresting (starting with contacts between Levi-Strauss
and mathematicians in the Bourbaki group, cf. Dosse 1991–92 [1997]).
Hence they might be worth exploring further too, in this case not so much
to derive benefits for the philosophy of mathematics, but to understand the
history of structuralism in human thought more fully.
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